

5-Triangular Sums

The n -th Triangular number, $\mathrm{T}(\mathrm{n})=1+\ldots+\mathrm{n}$, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example $T(4)$:

$$
\begin{gathered}
\mathrm{x} \\
\mathrm{xx} \\
\mathrm{xXx} \\
\mathrm{xXXx}
\end{gathered}
$$

Write a program to compute the weighted sum of triangular numbers:

$$
\mathrm{W}(\mathrm{n})=\mathrm{SUM}[\mathrm{k}=1 \ldots \mathrm{n} ; \mathrm{k} * \mathrm{~T}(\mathrm{k}+1)]
$$

Input

The first line of input contains a single integer $\mathrm{N},(1 \leq \mathrm{N} \leq 1000)$ which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, ($1 \leq \mathrm{n} \leq 300$), which is the number of points on a side of the triangle.

Output

For each dataset, output on a single line the dataset number, (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum, W(n), of triangular numbers for n .

Sample Input	Sample Output
4	
3	
4	3
5	3
10	45
2	4
3	5
4	2105
4	10

